organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3-(4-Fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-2-tosylprop-2-en-1-one

S. Murugavel,^a P. S. Kannan,^b A. SubbiahPandi,^c* Ramalingam Murugan^d and S. SrimanNarayanan^d

^aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, ^bDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^dDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: a_spandian@yahoo.com

Received 14 August 2008; accepted 17 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.067; wR factor = 0.241; data-to-parameter ratio = 13.6.

In the title compound, $C_{23}H_{19}FO_5S_2$, two of the phenyl ring C atoms and a sulfonyl O atom of the phenyl(methylsulfonyl) group are disordered over two positions with occupancies 0.522 (17):0.478 (17). The methylphenyl and fluorophenyl rings are essentially planar, with maximum deviations of 0.0059 (8) and 0.0047 (9) Å, respectively. The crystal packing is stabilized by $C-H \cdot \cdot \cdot F$ interactions.

Related literature

For details of the pharmacological activity, see: Turner (2002); Supuran & Scozzafava (2003); Masereel et al. (2002); Pellis & West (1968); Cohen et al. (1977); Csaszar & Morvay (1983); Lakshmi et al. (1985); El-Maghraby et al. (1984); Dzhurayev et al. (1992); Gewald et al. (1966).

Experimental

Crystal data	
$C_{23}H_{19}FO_5S_2$	a = 9.6962 (7) Å
$M_r = 458.52$	b = 22.8539 (16) Å
Monoclinic, $P2_1/n$	c = 10.8217 (7) Å

 $\beta = 109.672 \ (2)^{\circ}$ V = 2258.1 (3) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: none 21889 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.241$ S = 1.013994 reflections 293 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$C19-H19\cdots F^i$	0.93	2.37	3.274 (8)	167		
Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z - \frac{1}{2}$.						

 $\mu = 0.28 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int} = 0.029$

4 restraints

 $\Delta \rho_{\rm max} = 0.57 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min}$ = -0.25 e Å⁻³

 $0.26 \times 0.15 \times 0.15$ mm

3994 independent reflections

2543 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

SM and ASP thank Dr S. Pandi, Head of the Department of Physics, Presidency College (Autonomous), Chennai, for providing the necessary facilities; they also thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with collecting the X-ray intensity data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2219).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1322-1334.
- Csaszar, J. & Morvav, J. (1983). Acta Pharm. Hung. 53, 121-128.
- Dzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh. 26, 73-75.
- El-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327-336.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99-100.
- Lakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci. 47, 202-204.
- Masereel, S., Abbate, R. F., Scozzafava, A. & Supuran, C. T. (2002). J. Med. Chem. 45, 312-320.
- Pellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320-324. London: Butterworth & Co. Ltd.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Supuran, C. T. & Scozzafava, A. (2003). Med. Res. Rev. 15, 146-149.
- Turner, S. R. (2002). Curr. Med. Chem. Anti-Infective Agent, 1, 141-162.

Acta Cryst. (2008). E64, o2194 [doi:10.1107/S1600536808034028]

(Z)-3-(4-Fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-2-tosylprop-2-en-1-one

S. Murugavel, P. S. Kannan, A. SubbiahPandi, R. Murugan and S. SrimanNarayanan

Comment

Sulfonamides are an important class of drugs which are known for their pharmacological activities, *e.g.*, anti-microbial and anti-HIV (Turner, 2002), insulin-releasing anti-diabetic, carbonic anhydrase inhibition (Supuran & Scozzafava, 2003), high ceiling diuretic, anti-thyroid and anti-tumor (Masereel *et al.*, 2002). Some sulfur containing Schiff bases [Pellis & West, 1968; Cohen *et al.*, 1977; Csaszar & Morvay,1983; Lakshmi *et al.*, 1985], and their thiophene derivatives [El-Maghraby *et al.*, 1984; Dzhurayev *et al.*, 1992], exhibit anti-bacterial, anti-cancer, anti-inflammatory and anti-toxic pharmacological activity [Gewald *et al.*, 1966]. In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The F atom deviates by -0.027 (4)Å from the least-squares of the plane of ring B. Atoms O2, C6 and C7 are disordered with a ration of 47:52 (Fig 1). The methylphenyl and fluorophenyl rings are essentially planar, with maximum deviations of 0.0059 (8) and 0.0047 (9) Å, respectively.

Atom C19 (x, y, z) donates a proton to the F atom in a neighboring molecule (3/2 - x, -1/2 + y, -1/2 + z) forming a linear chain along the a axis. In addition to Van der Waals interactions, the crystal packing is stabilized by this C–H…F interaction.

Experimental

1.0 mol of 1-(4-(methylsulfonyl)phenyl)-2-tosylethanone(0.5 g), 1.0 mol of 4-fluorobenzaldehyde(0.18 g) and the sodium hydroxide(0.06 g) was allowed to stir overnight at room temperature to get the title compound. The crude product was filtered and then recrystallized by slow evaporation from chloroform: methanol [9:1] to give the single crystals used for data collection.

Refinement

The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same U^{ij} parameters were used for atoms O2A and O2B, C6A and C6B, and C7A and C7B. H atoms were positioned geomentrically (C-H = 0.93Å or 0.97 Å) and were treated as riding on their parent atoms, with $U_{iso}(H)=1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of title compound showing 30% probability displacement ellipsoids. The disordered components are shown.

(Z)-3-(4-Fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-2-tosylprop-2-en-1- one

Crystal data	
$C_{23}H_{19}FO_5S_2$	$F_{000} = 952$
$M_r = 458.52$	$D_{\rm x} = 1.349 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3994 reflections
<i>a</i> = 9.6962 (7) Å	$\theta = 1.8 - 25.1^{\circ}$
<i>b</i> = 22.8539 (16) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 10.8217 (7) Å	T = 293 (2) K
$\beta = 109.672 \ (2)^{\circ}$	Block, colourless
$V = 2258.1 (3) \text{ Å}^3$	$0.26\times0.15\times0.15\ mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	2543 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.029$
Monochromator: graphite	$\theta_{\text{max}} = 25.1^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.8^{\circ}$
ω and ϕ scans	$h = -11 \rightarrow 10$
Absorption correction: none	$k = -27 \rightarrow 27$
21889 measured reflections	$l = -12 \rightarrow 12$
3994 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained
$wR(F^2) = 0.241$	$w = 1/[\sigma^2(F_0^2) + (0.1393P)^2 + 1.1164P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.015$
3994 reflections	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$

293 parameters

 $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

4 restraints

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	1.3723 (4)	0.4255 (2)	-0.0871 (5)	0.0930 (14)	
H1A	1.3540	0.4621	-0.1335	0.139*	
H1B	1.3282	0.3943	-0.1466	0.139*	
H1C	1.4760	0.4191	-0.0502	0.139*	
C2	1.1672 (4)	0.3762 (2)	-0.0248 (4)	0.0890 (13)	
C3	1.1626 (4)	0.33042 (19)	-0.1075 (4)	0.0806 (11)	
H3	1.2361	0.3260	-0.1441	0.097*	
C4	1.0497 (4)	0.29108 (18)	-0.1363 (4)	0.0769 (11)	
H4	1.0475	0.2598	-0.1918	0.092*	
C5	0.9391 (4)	0.29742 (17)	-0.0836 (3)	0.0679 (10)	
C6A	0.932 (2)	0.3505 (5)	-0.0214 (16)	0.088 (5)	0.522 (17)
H6A	0.8507	0.3582	0.0025	0.105*	0.522 (17)
C6B	0.957 (2)	0.3373 (7)	0.0188 (16)	0.088 (5)	0.478 (17)
H6B	0.8912	0.3383	0.0641	0.105*	0.478 (17)
C7A	1.0415 (11)	0.3915 (9)	0.0058 (15)	0.089 (4)	0.522 (17)
H7A	1.0331	0.4276	0.0425	0.107*	0.522 (17)
C7B	1.0744 (16)	0.3748 (10)	0.0514 (15)	0.089 (4)	0.478 (17)
H7B	1.0927	0.3993	0.1237	0.107*	0.478 (17)
C8	0.8192 (4)	0.25372 (19)	-0.1142 (3)	0.0698 (10)	
С9	0.6772 (4)	0.27111 (17)	-0.0973 (3)	0.0666 (9)	
C10	0.5902 (4)	0.31364 (17)	-0.1618 (4)	0.0702 (10)	
H10	0.5098	0.3228	-0.1370	0.084*	
C11	0.6107 (4)	0.34758 (16)	-0.2697 (4)	0.0669 (9)	
C12	0.5815 (6)	0.4061 (2)	-0.2782 (5)	0.1029 (16)	
H12	0.5487	0.4239	-0.2158	0.123*	
C13	0.5997 (7)	0.4391 (2)	-0.3770 (6)	0.127 (2)	
H13	0.5812	0.4792	-0.3816	0.153*	
C14	0.6457 (6)	0.4119 (2)	-0.4688 (4)	0.0942 (14)	
C15	0.6751 (5)	0.3547 (2)	-0.4645 (4)	0.0861 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H15	0.7066	0.3373	-0.5280	0.103*	
C16	0.6576 (5)	0.32188 (17)	-0.3637 (4)	0.0773 (11)	
H16	0.6776	0.2820	-0.3592	0.093*	
C17	0.5859 (5)	0.1628 (2)	-0.0386 (4)	0.0824 (12)	
C18	0.6805 (8)	0.1184 (3)	0.0090 (6)	0.132 (2)	
H18	0.7669	0.1254	0.0781	0.159*	
C23	0.4581 (5)	0.1538 (3)	-0.1417 (5)	0.1033 (16)	
H23	0.3927	0.1842	-0.1762	0.124*	
01	1.4436 (7)	0.3984 (4)	0.1553 (7)	0.261 (4)	
O2A	1.268 (4)	0.4774 (8)	0.071 (3)	0.137 (6)	0.522 (17)
O2B	1.255 (5)	0.4845 (8)	0.021 (3)	0.137 (6)	0.478 (17)
O3	0.8339 (3)	0.20504 (15)	-0.1523 (4)	0.1011 (10)	
O4	0.7600 (3)	0.22936 (15)	0.1392 (3)	0.0991 (10)	
O5	0.5023 (4)	0.25992 (15)	0.0377 (3)	0.1033 (10)	
S1	1.31187 (15)	0.42709 (8)	0.01374 (16)	0.1220 (6)	
S2	0.63094 (12)	0.23274 (5)	0.02559 (10)	0.0801 (4)	
F	0.6602 (4)	0.44442 (14)	-0.5693 (3)	0.1362 (12)	
C22	0.4298 (7)	0.0953 (4)	-0.1942 (6)	0.128 (2)	
H22	0.3440	0.0871	-0.2630	0.154*	
C20	0.5310 (10)	0.0515 (3)	-0.1415 (8)	0.135 (2)	
C19	0.6521 (10)	0.0637 (3)	-0.0419 (8)	0.166 (3)	
H19	0.7192	0.0339	-0.0063	0.199*	
C21	0.4865 (13)	-0.0082 (4)	-0.2075 (9)	0.228 (5)	
H21A	0.5557	-0.0199	-0.2486	0.342*	
H21B	0.3907	-0.0054	-0.2725	0.342*	
H21C	0.4852	-0.0366	-0.1426	0.342*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.067 (3)	0.122 (3)	0.112 (3)	-0.040 (2)	0.059 (2)	-0.043 (3)
C2	0.060 (2)	0.139 (4)	0.075 (3)	-0.012 (2)	0.032 (2)	-0.029 (2)
C3	0.062 (2)	0.106 (3)	0.086 (3)	0.002 (2)	0.041 (2)	-0.014 (2)
C4	0.068 (2)	0.090 (3)	0.083 (3)	0.011 (2)	0.037 (2)	-0.009 (2)
C5	0.056 (2)	0.098 (3)	0.0552 (19)	0.0054 (19)	0.0253 (16)	-0.0033 (18)
C6A	0.060 (6)	0.161 (7)	0.052 (9)	-0.017 (5)	0.031 (7)	-0.030 (7)
C6B	0.060 (6)	0.161 (7)	0.052 (9)	-0.017 (5)	0.031 (7)	-0.030 (7)
C7A	0.064 (5)	0.143 (11)	0.062 (8)	-0.010 (5)	0.024 (6)	-0.038 (7)
C7B	0.064 (5)	0.143 (11)	0.062 (8)	-0.010 (5)	0.024 (6)	-0.038 (7)
C8	0.071 (2)	0.084 (3)	0.060 (2)	0.010 (2)	0.0291 (18)	0.0063 (18)
C9	0.057 (2)	0.084 (2)	0.062 (2)	0.0006 (18)	0.0245 (16)	0.0043 (17)
C10	0.055 (2)	0.086 (2)	0.074 (2)	0.0004 (18)	0.0274 (17)	0.0023 (19)
C11	0.055 (2)	0.074 (2)	0.073 (2)	-0.0010 (17)	0.0243 (17)	0.0036 (17)
C12	0.130 (4)	0.087 (3)	0.123 (4)	0.028 (3)	0.084 (3)	0.020 (3)
C13	0.186 (6)	0.079 (3)	0.157 (5)	0.030 (3)	0.112 (5)	0.030 (3)
C14	0.112 (4)	0.091 (3)	0.088 (3)	-0.005 (3)	0.044 (3)	0.020 (2)
C15	0.105 (3)	0.090 (3)	0.070 (2)	-0.006 (2)	0.038 (2)	-0.005 (2)
C16	0.096 (3)	0.072 (2)	0.064 (2)	-0.003 (2)	0.028 (2)	-0.0008 (17)

C17	0.079 (3)	0.105 (3)	0.069 (2)	-0.008 (2)	0.032 (2)	0.019 (2)
C18	0.146 (5)	0.101 (4)	0.124 (5)	0.006 (4)	0.012 (4)	0.011 (3)
C23	0.082 (3)	0.150 (5)	0.082 (3)	-0.023 (3)	0.033 (2)	0.021 (3)
01	0.138 (4)	0.415 (12)	0.189 (6)	-0.047 (6)	-0.001 (4)	-0.062 (7)
O2A	0.118 (7)	0.170 (5)	0.147 (18)	-0.055 (4)	0.076 (14)	-0.082(7)
O2B	0.118 (7)	0.170 (5)	0.147 (18)	-0.055 (4)	0.076 (14)	-0.082 (7)
03	0.095 (2)	0.092 (2)	0.133 (3)	0.0088 (17)	0.060 (2)	0.0008 (19)
O4	0.094 (2)	0.130 (3)	0.0670 (18)	0.0013 (18)	0.0190 (15)	0.0136 (16)
05	0.101 (2)	0.131 (3)	0.102 (2)	0.0228 (19)	0.067 (2)	0.0240 (18)
S1	0.0773 (8)	0.1712 (15)	0.1302 (12)	-0.0381 (8)	0.0517 (8)	-0.0670 (10)
S2	0.0759 (7)	0.1063 (9)	0.0653 (6)	0.0055 (5)	0.0333 (5)	0.0160 (5)
F	0.190 (3)	0.118 (2)	0.125 (2)	-0.002 (2)	0.086 (2)	0.0390 (18)
C22	0.121 (5)	0.187 (7)	0.082 (3)	-0.064 (5)	0.042 (3)	-0.007 (4)
C20	0.170 (7)	0.125 (5)	0.122 (5)	-0.025 (5)	0.066 (5)	0.013 (4)
C19	0.189 (8)	0.121 (6)	0.151 (6)	0.002 (5)	0.008 (6)	0.005 (5)
C21	0.352 (15)	0.160 (7)	0.196 (9)	-0.102 (9)	0.123 (10)	-0.057 (6)

Geometric parameters (Å, °)

C1—S1	1.402 (4)	C12—C13	1.368 (7)
C1—H1A	0.9600	C12—H12	0.9300
C1—H1B	0.9600	C13—C14	1.369 (7)
C1—H1C	0.9600	С13—Н13	0.9300
C2—C3	1.368 (6)	C14—C15	1.336 (6)
С2—С7В	1.410 (6)	C14—F	1.363 (5)
C2—C7A	1.411 (6)	C15—C16	1.380 (5)
C2—S1	1.761 (5)	C15—H15	0.9300
C3—C4	1.369 (6)	С16—Н16	0.9300
С3—Н3	0.9300	C17—C18	1.350 (7)
C4—C5	1.381 (5)	C17—C23	1.375 (6)
C4—H4	0.9300	C17—S2	1.738 (5)
С5—С6В	1.399 (7)	C18—C19	1.357 (9)
C5—C6A	1.399 (7)	C18—H18	0.9300
C5—C8	1.483 (6)	C23—C22	1.443 (8)
C6A—C7A	1.370 (7)	С23—Н23	0.9300
С6А—Н6А	0.9300	O1—S1	1.758 (7)
C6B—C7B	1.370 (7)	O2A—S1	1.435 (6)
С6В—Н6В	0.9300	O2B—S1	1.435 (6)
С7А—Н7А	0.9300	O4—S2	1.431 (3)
С7В—Н7В	0.9300	O5—S2	1.438 (3)
C8—O3	1.211 (5)	C22—C20	1.383 (10)
C8—C9	1.503 (5)	С22—Н22	0.9300
C9—C10	1.322 (5)	C20—C19	1.329 (10)
C9—S2	1.772 (4)	C20—C21	1.532 (10)
C10-C11	1.469 (5)	С19—Н19	0.9300
C10—H10	0.9300	C21—H21A	0.9600
C11-C16	1.377 (5)	C21—H21B	0.9600
C11—C12	1.364 (6)	C21—H21C	0.9600
S1—C1—H1A	109.5	С12—С13—Н13	120.8

S1—C1—H1B	109.5	C14—C13—H13	120.8
H1A—C1—H1B	109.5	C15—C14—F	118.9 (4)
S1—C1—H1C	109.5	C15—C14—C13	122.5 (4)
H1A—C1—H1C	109.5	F-C14-C13	118.6 (5)
H1B—C1—H1C	109.5	C14—C15—C16	118.6 (4)
С3—С2—С7В	118.5 (10)	С14—С15—Н15	120.7
C3—C2—C7A	120.2 (8)	C16—C15—H15	120.7
C3—C2—S1	120.6 (3)	C11—C16—C15	120.7 (4)
C7B—C2—S1	119.4 (9)	C11—C16—H16	119.6
C7A—C2—S1	117.6 (9)	C15—C16—H16	119.6
C2—C3—C4	119.9 (4)	C18—C17—C23	120.5 (5)
С2—С3—Н3	120.0	C18—C17—S2	119.5 (4)
С4—С3—Н3	120.0	C23—C17—S2	119.9 (4)
C5—C4—C3	120.6 (4)	C17—C18—C19	121.3 (6)
C5—C4—H4	119.7	C17—C18—H18	119.3
C3—C4—H4	119.7	C19—C18—H18	119.3
C4—C5—C6B	119.1 (9)	C17—C23—C22	117.3 (5)
C4—C5—C6A	117.2 (9)	С17—С23—Н23	121.3
C4—C5—C8	119.8 (3)	С22—С23—Н23	121.3
C6B—C5—C8	119.8 (9)	C1—S1—O2B	109.6 (12)
C6A—C5—C8	122.1 (8)	C1—S1—O2A	128.1 (12)
C7A—C6A—C5	122.7 (16)	C1—S1—O1	107.3 (3)
С7А—С6А—Н6А	118.6	O2B—S1—O1	118.3 (14)
С5—С6А—Н6А	118.6	O2A—S1—O1	99.0 (12)
C7B—C6B—C5	119.0 (17)	C1—S1—C2	107.9 (2)
С7В—С6В—Н6В	120.5	O2B—S1—C2	109.0 (18)
С5—С6В—Н6В	120.5	O2A—S1—C2	107.7 (16)
C6A—C7A—C2	116.4 (17)	O1—S1—C2	104.3 (3)
С6А—С7А—Н7А	121.8	05—82—04	118.6 (2)
С2—С7А—Н7А	121.8	O5—S2—C17	108.9 (2)
C6B—C7B—C2	120.0 (17)	O4—S2—C17	108.9 (2)
C6B—C7B—H7B	120.0	O5—S2—C9	107.52 (18)
С2—С7В—Н7В	120.0	O4—S2—C9	107.61 (18)
O3—C8—C5	121.4 (4)	C17—S2—C9	104.35 (18)
O3—C8—C9	120.1 (4)	C20—C22—C23	119.6 (6)
C5—C8—C9	118.4 (3)	С20—С22—Н22	120.2
C10—C9—C8	125.3 (3)	C23—C22—H22	120.2
C10—C9—S2	118.9 (3)	C19—C20—C22	119.6 (7)
C8—C9—S2	115.8 (3)	C19—C20—C21	126.6 (9)
C9—C10—C11	125.1 (3)	C22—C20—C21	113.7 (8)
C9—C10—H10	117.4	C20-C19-C18	121.7 (8)
C11-C10-H10	117.4	С20—С19—Н19	119.2
C16—C11—C12	118.7 (4)	С18—С19—Н19	119.2
C16—C11—C10	121.9 (3)	C20—C21—H21A	109.5
C12—C11—C10	119.4 (4)	C20—C21—H21B	109.5
C13—C12—C11	121.0 (4)	H21A—C21—H21B	109.5
C13—C12—H12	119.5	C20—C21—H21C	109.5
C11—C12—H12	119.5	H21A—C21—H21C	109.5
C12—C13—C14	118.5 (5)	H21B—C21—H21C	109.5

C7B—C2—C3—C4	13.9 (11)		F-C14-C15-C16		-178.9 (4)
C7A—C2—C3—C4	-15.3 (11)		C13—C14—C15—C16		0.3 (8)
S1—C2—C3—C4	179.8 (4)		C12—C11—C16—C15		0.2 (6)
C2—C3—C4—C5	0.6 (7)		C10-C11-C16-C15		179.6 (4)
C3—C4—C5—C6B	-12.5 (12)		C14—C15—C16—C11		0.1 (7)
C3—C4—C5—C6A	11.7 (10)		C23—C17—C18—C19		-0.7 (10)
C3—C4—C5—C8	-178.9 (4)		S2-C17-C18-C19		-177.4 (6)
C4—C5—C6A—C7A	-9.9 (17)		C18—C17—C23—C22		0.9 (7)
C6B—C5—C6A—C7A	91 (5)		S2-C17-C23-C22		177.5 (3)
C8—C5—C6A—C7A	-179.1 (10)		C3—C2—S1—C1		23.0 (5)
C4—C5—C6B—C7B	9(2)		C7B-C2-S1-C1		-171.3 (10)
C6A—C5—C6B—C7B	-82 (4)		C7A-C2-S1-C1		-142.3 (9)
C8—C5—C6B—C7B	175.7 (12)		C3—C2—S1—O2B		141.9 (12)
C5—C6A—C7A—C2	-3.9 (18)		C7B—C2—S1—O2B		-52.4 (17)
C3—C2—C7A—C6A	16.6 (15)		C7A—C2—S1—O2B		-23.4 (16)
C7B-C2-C7A-C6A	-77 (4)		C3—C2—S1—O2A		164.5 (12)
S1—C2—C7A—C6A	-178.0 (9)		C7B—C2—S1—O2A		-29.7 (17)
C5—C6B—C7B—C2	5(2)		C7A—C2—S1—O2A		-0.8 (16)
С3—С2—С7В—С6В	-17.0 (19)		C3-C2-S1-O1		-90.9 (5)
C7A—C2—C7B—C6B	84 (3)		C7B-C2-S1-01		74.9 (11)
S1—C2—C7B—C6B	177.0 (12)		C7A-C2-S1-01		103.8 (9)
C4—C5—C8—O3	20.9 (6)		C18—C17—S2—O5		-139.9 (4)
C6B—C5—C8—O3	-145.5 (11)		C23—C17—S2—O5		43.5 (4)
C6A—C5—C8—O3	-170.3 (10)		C18—C17—S2—O4		-9.1 (5)
C4—C5—C8—C9	-159.0 (3)		C23—C17—S2—O4		174.2 (3)
C6B-C5-C8-C9	34.6 (12)		C18—C17—S2—C9		105.5 (4)
C6A—C5—C8—C9	9.9 (10)		C23—C17—S2—C9		-71.1 (4)
O3—C8—C9—C10	-118.1 (5)		C10—C9—S2—O5		-3.8 (4)
C5—C8—C9—C10	61.7 (5)		C8—C9—S2—O5		173.3 (3)
O3—C8—C9—S2	65.0 (4)		C10—C9—S2—O4		-132.6 (3)
C5—C8—C9—S2	-115.1 (3)		C8—C9—S2—O4		44.4 (3)
C8—C9—C10—C11	6.0 (6)		C10-C9-S2-C17		111.8 (3)
S2	-177.3 (3)		C8—C9—S2—C17		-71.1 (3)
C9—C10—C11—C16	39.3 (6)		C17—C23—C22—C20		-1.0 (7)
C9—C10—C11—C12	-141.2 (5)		C23—C22—C20—C19		1.0 (10)
C16—C11—C12—C13	-0.7 (8)		C23—C22—C20—C21		-179.7 (5)
C10—C11—C12—C13	179.8 (5)		C22—C20—C19—C18		-0.8 (12)
C11—C12—C13—C14	1.1 (10)		C21—C20—C19—C18		180.0 (8)
C12—C13—C14—C15	-0.8 (9)		C17—C18—C19—C20		0.6 (13)
C12—C13—C14—F	178.3 (5)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C19—H19…F ⁱ		0.93	2.37	3.274 (8)	167

Symmetry codes: (i) -x+3/2, y-1/2, -z-1/2.

